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ABSTRACT

Yield condition of sintered powder materials are introduced briefly, the velocity discontinu-
ity law of which in plane strain is deduced and equation of upper bound power for plane strain is
derived. The upper bound solution of pressure for sintered powder materials in smooth plate upset-
ting is derived from the upper bound method, and theoretical calculation is verified by experiment
of smooth plate upsetting with rectangular specimen of sintered copper.
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1 INTRODUCTION

In principal stress coordinates ( o,, 0+, 03 ),
1~3

yield condition-
%[(m — )" + (02 — 03)°
4+ (o3 — o)) ] + (aoy)® =172 (

of sintered powder materials is;
With the development of plastic working tech-
nology of sintered powder materials and the wide

employment of high performance parts of the mate-
where

rials, more attention is paid to the research of plas-
tic mechanics of sintered powder materials. In or-
der to obtain load, stress and velocity distribution
of plastic working, slip line method for sintered
powder materials is developed and applied to re-
But for this method
construction of slip line field is difficult.

solve plane strain problem!!-,
Upper
bound method for sintered powder materials is a
less difficult method, in Ref. [ 1] the equation of
upper bound power for o, << 0 is derived from the
character of slip line field, and upper bound solu-
tion of extrusion pressure is given. But in Ref. [ 1]
the equation of upper bound power for ¢, > 0 is
not derived and the upper bound solution is not veri-
fied by experiment. These and other related prob-
lems of upper bound method for sintered powder
materials in plane strain are researched.

2 BASIC EQUATION

2.1 Yield Condition

(@ Manuscript received Jun. 15,1993

« — yield coefficient of hydrostatic pres-

sure, a = 3 /(1 — p)/(2 + p*); ¥ —equiva-
lent yield strength of sintered powder material.

The geometric surface of equation (1) is an el-
liptic sphere. In order to simplify calculation, a
hexagonal pyramid ' in the elliptic sphere is used to

express the yield surface of sintered powder materi-

al approximately. Then the yield condition '*- cor-
responding to the hexagonal pyramid is;

om <0, N

Tman = Tmin — (Omay + Omn) sinf) = Ycost) { 2
Om > 0,

Tman — Ui + (Uran = Omin ) SN0 = )'co.sf/J

where  Ompis Omin — the maximum and the mini-

mum principal stresses in algebraic value respective-
ly ; # —function of coefficient «, 00 = tg~ ' («/2) .

Apparently , yield surfaces of equation (1)
and (2) are all convex. If relative density p =1,
i. e. sintered powder material changed into fully
dense metal. then « = # = 0 , equations (1) and
(2) are changed into Mises and Tresca yield condi-
tion respectively.
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2.2 Yield Stress and Strain

In plane strain state, medium principal stress
is normal to deformation plane, the other two prin-
cipal stresses of the deformation plane are the maxi-
mum and the minimum principal stress respective-
ly. If take o,
(2) can be expressed by yield function as follows,

f =0, — 0, F (0, + 02)sinf) — Ycost
=0

where  minus and plus signs of “J-
sponding to ¢, <. 0 and ¢, > 0 respectively. This

= Omxs 02 = Omin » then equation

3
” are corre-
regulation is observed in the following paragraph.
From plastic potential theory''-, we can ob-
tain principal strain rates ¢ and ¢ as follows:

. P ] - .
g = A af = (1 TF sinf) l
20
o H
=i =i(—1F sin/))J
90,
where A is a non-negative constant.

The strain rates of equation (4) can be shown
in Mohrt’ s strain rate circles as Fig. 1, from which
we have strain rate components ¢,, &, 7, as;
: Ai(cos2¢ F sind)

A(— cos2¢ TF sinf)
Vey = ASin2¢
@ is angle rotated from coordinate r to the

& =
g = (5)
where
maximum strain rate £, or the maximum stress o, ,
take the angle counter-clockwise as positive.

In coordinates ( ¢, 7 ), geometric curve of
yield condition (2) can be shown as Fig. 2. The
stress state expressed by Mohr' s stress circle tan-

Fig. 1

Mohr' s strain rate circle

gent to yield curve in Fig. 2 agrees with yield condi-
tion (3), and its stress components o,, o,, 7, are:
o, = 0 + IX’COSZ(/)\L

g, = o0 — Rcos2e » (6)
7,, = Rsin2¢
where o —average stress, ¢ = (o, + 0.)/2;

R —radius of Mohr's stress circle, from geometric

relation of Fig. 2 we have.
R = Y /2cost) 4= asinf} 7

3 VELOCITY DISCONTINUITY AND UP-
PER BOUND POWER EQUATION

3.1 TVelueity Discontinuity

Velocity discontinuity is that velocity interrup-

tion takes place across discontinuous line. In fact

discontinuous velocity line is a narrow zone with

e
S

Y/2

D
il
=

Fig. 2 Yield condition and Mohr’ s stress circle
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thickness & shown in Fig. 3, if b =0, this zone is
changed into a discontinuous velocity line. Take
s 2 @and rn, m2 as tangential and normal veloci-
ties on each side of discontinuous velocity line re-
spectively. From expression (5) and geometric e-
quation of deformation zone we have strain rate
components &, & , 1, on discontinuous velocity line
as follows;

& = Alcos2q, F sin0) = %
& = A(— cos2¢p, F sinf)
_ oy, . T = Upy
 om b
. : 1 ey ar, (8)
Yin = /5in2¢, = 5 (an + at)
_ 1l re —ra | 8t
o 2( b + at)
—~ l Ty — Uy
2 b

where @, is angle rotated from discontinuous line

to the maximum strain rate or the maximum stress.

' € (o))

Fig. 3 Discontinuous velocity
and discontinuous velocity line

If b— 0, then from the second equation of ex-
. . N oy . N
pression (8) & —> oo, A— oo . However —t' i.e. &
S

is taken place in one side of discontinuous velocity
line (not across the line), its value is finite. hence
from the first equation of expression (8) we have
cos2@, + sinf = 0, i.e. ;
lpi| = a/4 F0/2 (9
Substitute expression (9) into (8), we have

. S Tay — Pas
& =0, & =7F 2isinf = ————

5 s | e | = icost)

L Vg — Ty |

1
5 | 5 ; hence.

1991
Ate Tar — &
Are e — a2y,
T 2/sin®
— T et g
2.c0sl +e (o

Expression (10) indicates discontinuous veloci-
ty inclines angle ¢ to discontinuous velocity line for
sintered powder materials in plane strain. Take /\r
as discontinuous velocity , then

[An] = | /Ar]cost

[Ar.| = | Av|sing

If relative density p = 1, i. e. sintered powder

(1

material changed into fully dense metal ,then # = 0
, from expression (11) we have Ar», = 0 . which
is the same as that of fully dense metal.

3.2 Fquation of U pper Bound Puier

Take I" as volume of deformation body, S as
total surface, and S is divided into velocity bound-
ary S5.and stress boundary 5. On S,and S, and ve-
locity », and stress 7, are given respectively. The
practical internal stress and strain rate field of de-
formation body are o, and ¢, respectively. Assume
a kinematically admissible velocity field » , which
is accorded with mass constancy and velocity bound-
ary condition. and the internal stress field, strain
rate field and discontinuous velocity surface of de-
formation body corresponding to the kinematically
admissible velocity field » are o, . ¢ and S; re-
spectively. On S, discontinuous velocity is A" .
If neglect volume force. then the equation -° of up-
per bound power in plastic deformation is.

J Trds < J o e dl 4 J R AVAN N
N | S

— j T rods

In plane strain, strain rate field ¢ determined

12y

by stress field ., corresponding to kinematically ad-
missible velocity field »7 and accorded with yield
condition (2) is meeted the case of expression (1),

hence
giE = ol - oiel = o 201 F sind)
+ 052 (— 1 Fsinf)) = ;Y cost
. : o — e .
From expression (1) /. = IT = Vi s
then

f o5 indl = J Vi) costd] (13)
I |
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See Fig. 3, take 7., and o, as shear and normal
stresses, then

T Av = |taA\v" | + oA |

Substitute expression (6) and (11) into
above and consider expression (9), we have;

T.Av' = |RAv* cos?d|

+ | (e F Rsin®) A\r*sind|

For R> 0, then o <0, o — Rsin0 <_0; 0>
0 , then ¢ + Rsind > (; hence,
T.A\v* = RAv*cos’d F (o F Rsin0) /\r*sinf

= % /A\v*cosf , therefore,

f T ds =f pArteostds (1)
o s,

D
Substitute expressions (13) and (14) into
(12), we have equation of upper bound power for
sintered powder materials in plane strain as fol-
lows
J Tds <J VoY cosfdl”
S Vv

+J XAz:*cosb‘ds
s, 2

— J T ds
S

Id

15

From expression (15) we see the equation of
upper bound power corresponding to o, << 0 and oy,
> (0 is the same. If take deformation zone as a
group of rigid blocks which slide each other, then
yax = 0 ; Furthermore if there is no stress on Sr
then Js Twv>ds = 0, therefore equation (15) of

4
upper bound power can be simplified as;

J Twds < J . %Ar’ cosfds
s !

D

16)

If relative density p = 1i. e. the sintered pow-

der material changed into fully dense metal, then ¢
= 0, expressions (15), (16) are changed into e-
quations-° of upper bound powet of fully dense
metal in plane strain.

4 UPPER BOUND SOLUTION OF
SMOOTH PLATE UPSETTING

Smooth plate upsetting of rectangular preform
made from sintered powder material is shown in
Fig. 4(a), the height of specimen is 2 &, the width
of rigid smooth plate is 2H", and two plates move to-
wards the central plane with unit speed. If we di-
vide deformation zone into a series of rigid blocks,
then the boundary lines between the blocks are dis-
continuous velocity lines, which incline an angle f#
to the press plate. There is velocity discontinuity
both in tangential and normal directions along the
discontinuous line i. e. discontinuous velocity in-
clines angle § to the discontinuous line. Because of
symmetric deformation, it is enough to calculate up-
per bound power of quarter deformation zone in up-
per right of the preform. The hodagraph corre-
sponding to the quarter zone is shown in Fig. 4(b).
Take N as intersected points of central line and dis-
continuous lines, from Fig. 4 (a) we can obtain
length L of each discontinuous line as follows;

L =1 /(Ncosp) an

From Fig. 4(b) we have discontinuous veloci-
ty A\r" as follows;

N i

A= G+ 0

If take p as average pressure of plate, then

(18)

from equation (16) of upper bound power we have

F
0 b d
— 14
‘2" ! J
S
a <
(a) (b)

Fig. 4

Smooth plate upsetting of sintered powder material and the hodagraph
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peW e 1 <IN /2)cos0N\rT L
_r Weost)
T2 cosfsin(f + M)
Y cosf)
pg?cosﬂsin(/f—’—/)) = (P (19)
Differentiate expression (19) we have;
ap _ Y cosficos(2f + )
of 2 cos’fsin®(f 4 )
o _ — (X7 ubsti-
Make of 0 we have = ( i 5 ) ;5 substi

tute it into expression (19) we have the minimum

plate pressure as follows:
Ycosf

a 1 .
A R Y] 20
Wk W
i . i = XY 13- ’ ~\V:77
See Fig. 4(a), W, N tgf W
I 14

w
- Ttg/)’ . When g = , the discontinuous
3

42
velocity line is in accord with slip line-'*-, and the
minimum upper bound solution is the same as slip

w :
line solution, furthermore in this case Ttg(% —

0 W : 1z
E) is a positive integer. But If Ttg(% — 7) is

: 0
not an integer i.e. f 7% (% — 7) , then the up-

per bound solution can not be obtained from differ-
entinating expression (19). In this case we rear-
range expression (19) as follows;
Y cosf
S 2 cosfsin(f + &)
=
sin®f + 2cos® gl
¥
2 2tgf
sing + ctgf + 1 4 t1g°p

4}
If take o then from Fig. 4(a) we have
A

(21)

N T . .
tgf = —, ctgf = N substitute them into expres-
T -

sion (21), we have;
¥ .
PSS T  w (22)
N ' N .
RSSOk
7 A 7

Expression (22) is an upper bound solution

. W B 0 .
corresponding to I—ltg(? - ? ) not as an integer.

In order to obtain lower pressure from expression
(22), a proper value of N which makes f = tg '

N R {
I o (_ —_—

)
o~ n 5 ) is needed to be determined. If

take pressure of expression (20) as unit, then the
upper bound plate pressure p which is a function of
width-height ratio 1/'// and # corresponding to rela-
tive density pis shown as Fig. 5. If relative density
p = 11i.e. sintered powder material changed into
fully dense metal, then # = (0 , expression (22)
and the curve (# = 0 ) in Fig. 5 are changed into
upper bound solutions - of fully dense metal.

Ycosd
Ay
1—0=0(p=1)
106 2—§ = 10°(p = 0. 9799)
1. 0%
1. 04}
1. 03
1. 02}
1.0}
1. 00
1.0 1.5 2.0 2.5 3.0 3.5
W/h
Fig. 5 Curve of upper bound plate pressure to

width-height ratio and relative density

5 EXPERIMENTAL RESULTS

The experiment of rigid smooth plate upsetting
of rectangular preform made from sintered copper
is made to verify the upper bound calculation. Rect-
angular specimens are made from electrolytic pow-
der copper (purity of copper>=99.8% ) by a pro-
cess of blending. compacting and sintering. Sinter-
ing temperature and time are 920+ 10 C and 2h
respectively , sintering atmosphere is cracked ammo-
nium. The experiment is conducted on a WI-60
type material test machine at room temperature. In
order to minimize friction on the contact surface be-
tween specimen and tool and simulate frictionless
smooth plate upsetting. the contact surfaces of spec-
imen and tool are ground and polished and smeared
with a lubricating zinc stearate- alcohol paste in
test. Each specimen is compressed many times,
and we rccord the load and its geometric dimension
in each compression. The experimental results and
theoretical calculations are shown in Table 1, the

initial data of specimens are shown in Table 2. In
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Table 1 Theoretical calculations and experimental results
No. 1 No. ” No. 3
Compressing
number , MT ?,/MPa p /MPa %% » % pe/MPa 1 ‘MPa 1{%/ » % e ‘MPa py 'MPa %
1 0.823 1.65 94.4 109.0 155 0.805 1.51 57.3 36.3 ~1.7 0.831 L.51 326 61.3 16.5
2 0.848 1.84 144.0 156.4 8.6  0.811 1.80 1312 1i5.3 8. 1 0.861 1.78 [30.1 135, 1 3.3
3 0.871 2.08 188.9 191.0 2.7 0.860 1.9% 168.5 176.9 5.0 0.881 1.97 189.6 195.5 3.1
4 0.896 2.36 228.3 227.2  —0.5  0.895 2.11 232.5 275.5 3.0 0.901 2.20 2207 2311 2.8
5 0.914 2.67 261.6 218.1 ~5.2 0.9 268 239.1 2112 5.0 0.922 15 259.9 258.8 0.1
6 0.925 3.02 287.9 263.8 - &1t 0.916 3.12 297.1 92629 11.6  0.917 3.02 315.1 299.0 -5.2

Notation: p, pe, p are instant relative density, experimental and theoretical plate pressure respectively,

calculation of plate pressure the following equiva-
lent yield strength Y of sintered copper is needed,

Table 2 Initial data of specimens
Specimen Weight Length Width Height Initial relative
No /g /mm /mm /mm density
1 143.2 44.90 15.09 29.65 0. 801
2 142.8 44.87 15.08 29.63 0. 800
3 143.1 44.31 14.94 29.26 0. 830

which is determined™ from uniaxial compression of
cylindrical specimen as follows,

o a
Y-A(““—i_j—i_?)

X (In P l;pg)“
PN 1 — p7
A =— 196. 81 4 656.69p, (MPa)

n=0.9301 — 0.6171p
where  p, is initial relative density of sintered cop-
per.

From Table 1, experimental and theoretical
plate pressures increase with increasing relative den-
sity and width-height ratio. Because friction on con-
tact surfaces of specimen and die can not be eliminat-
ed thoroughly, and the friction increases with in-
creasement of relative density and width-height ratio
in upsetting, the experimental plate pressure increas-
es faster than that of theoretical calculation corre-
sponding to frictionless smooth plate upsetting, the

relative error ( p, — p.)/p. changes from positive to

negative in the upsetting. The absolute value of rela-
tive error is 10% more or less. This calculating pre-
cision is admissible for engineering design.

6 CONCLUSIONS

(1) Discontinuous velocity inclines an angle #
to discontinuous velocity line for sintered powder
materials in plane strain is deduced.

(2) Equation of upper bound power for sin-
tered powder materials in plane strain is derived.

(3) Upper bound pressure for smooth plate up-
setting of sintered powder materials is obtained, and
compared with experimental result of smooth plate
upsetting of sintered copper.
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