Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面


Transactions of Nonferrous Metals Society of China

Vol. 27    No. 12    December 2017

[PDF Download]    [Flash Online]    


Effect of solid solution treatment on in vitro degradation rate of as-extruded Mg-Zn-Ag alloys
Li-qing WANG, Gao-wu QIN, Shi-neng SUN, Yu-ping REN, Song LI

Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract:The degradation behaviors of the as-extruded and solution treated Mg-3Zn-xAg (x=0, 1, 3, mass fraction, %) alloys, as well as as-extruded pure Mg, have been investigated by immersion tests in simulated body fluid (SBF) at 37 °C. The as-extruded Mg-Zn(-Ag) alloys contained Mg51Zn20 and Ag17Mg54. While the quasi-single phase Mg-Zn(-Ag) alloys were obtained by solution treatment at 400 °C for 8 h. The quasi-single phase Mg-Zn(-Ag) alloys showed lower degradation rate and more homogeneous degradation than corresponding as-extruded Mg alloys. Degradation rate of solid-solution treated Mg-3Zn-1Ag and Mg-3Zn-3Ag was approximately half that of corresponding as-extruded Mg alloy. Moreover, the degradation rate of solid-solution treated Mg-3Zn and Mg-3Zn-1Ag was equivalent to that of as-extruded pure Mg. However, heterogeneous degradation also occurred in quasi-single phase Mg-Zn-Ag alloys, compared to pure Mg. So, preparing complete single-phase Mg alloys could be a potential and feasible way to improve the corrosion resistance.


Key words: biodegradable Mg alloy; Mg-Zn-Ag alloy; solution treatment; corrosion resistance

ISSN 1004-0609
CN 43-1238/TG

ISSN 1003-6326
CN 43-1239/TG

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱